Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Васин Андрей Алексеевич

Должность: Директор

Дата подписания: 04.11.2025 20:46:41

Уникальный программный ключ:

Приложение к ППССЗ по специальности 23.02.09 Автоматика и телемеханика на транспорте 024351b057f52db077c71d3580e1dae6e821f4efaee47ac2d950c80ze684edf2 (железнодорожном транспорте)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ учебной дисциплины

ОП 02 Электронная техника

основной профессиональной образовательной программы по специальности 23.02.09 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

(Базовая подготовка среднего профессионального образования)

Содержание

1.Паспорт комплекта контрольно-оценочных средств.	3
2.Результаты освоения учебной дисциплины, подлежащие проверке.	5
3.Оценка освоения учебной дисциплины:	6
3.1Формы и методы оценивания.	6
3.2 Кодификатор оценочных средств.	10
4. Задания для оценки освоения дисциплины.	1

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ОП.02 Электронная техника обучающийся должен обладать предусмотренными ФГОС по специальности 23.02.09 Автоматика и телемеханика на транспорте (железнодорожном транспорте) следующими знаниями, умениями, которые формируют профессиональные компетенции, и общими компетенциями, а также личностными результатами осваиваемыми в рамках программы воспитания:

уметь:

- определять и анализировать основные параметры электронных схем и по ним устанавливать работоспособность устройств электронной техники;
- производить подбор элементов электронной аппаратуры по заданным параметрам

знать:

- сущность физических процессов, протекающих в электронных приборах и устройствах;
- принципы включения электронных приборов и построения электронных схем;
 - типовые узлы и устройства электронной техники.
- 1.3.2 В результате освоения учебной дисциплины обучающийся должен сформировать следующие компетенции:

-общие:

- OK.01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OK.02 Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности

-профессиональные:

- ПК1.1 Анализировать работу станционных, перегонных, микропроцессорных и диагностических систем автоматики по принципиальным схемам.
- ПК1.2 Выполнять разработку монтажных схем устройств сигнализации, централизации и блокировки железнодорожной автоматики и телемеханики по принципиальным схемам.
- ПК1.3. Проводить измерения параметров приборов и устройств сигнализации, централизации и блокировки.
- ПК 3.2 Осуществлять регулировку и проверку работы устройств и приборов сигнализации, централизации и блокировки.
- 1.3.3 В результате освоения программы учебной дисциплины реализуется программа воспитания, направленная на формирование следующих личностных результатов (ЛР):

- Заботящийся о защите окружающей среды, собственной и чужой безопасности, в том числе цифровой;
- Готовность обучающегося соответствовать ожиданиям работодателей: ответственный сотрудник, дисциплинированный, трудолюбивый, нацеленный на достижение поставленных задач, эффективно взаимодействующий с членами команды, сотрудничающий с другими людьми, проектно мыслящий;
- Способный к генерированию, осмыслению и доведению до конечной реализации предлагаемых инноваций;
- Проявляющий способности к непрерывному развитию в области профессиональных компетенций и междисциплинарных знаний.

Формой промежуточной аттестации по учебной дисциплине является экзамен

2. Результаты освоения учебной дисциплины, подлежащие проверке

2.1. В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих, профессиональных компетенций и личностных результатов в рамках программы воспитания:

Результаты обучения:	Показатели оценки результата	Форма контроля и		
умения, знания и		оценивания		
Уметь:				
Рассчитывать параметры и элементы электронных устройств. ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	 Знание элементов электрических и электронных устройств. Расчёт параметров электрических и электронных устройств. 	Экспертное наблюдение и оценка на лабораторных и практических занятиях, выполнение индивидуальных		
Собирать электронные схемы и проверять их работу. ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	- Чтение электронных схем - Сбор и проверка работы электронных схем.	домашних заданий Экспертное наблюдение и оценка на лабораторных и практических занятиях, выполнение индивидуальных		
Измерять параметры электронных схем. ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	- Измерение параметров электронных схем	домашних заданий Экспертное наблюдение и оценка на лабораторных и практических занятиях, выполнение индивидуальных домашних заданий		
Знать:				
физические процессы в электронных схемах; ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	- Знание физических процессов в электронных схемах.	Различные виды опроса, решение задач по индивидуальным заданиям, контрольная работа		
методы расчёта электронных схем; ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	-Знание методов расчета электронных схем.	Различные виды опроса, решение задач по индивидуальным заданиям, контрольная работа		
методы преобразования сигнала в электронных схемах. ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	-Знание способов преобразования и передачи сигнала в электронных схемах.	Различные виды устного опроса, решение задач по индивидуальным заданиям, контрольная работа		

3. Оценка освоения учебной дисциплины:

3.1. Формы и методы контроля.

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине ОП.02 Электронная техника, направленные на формирование общих и профессиональных компетенций.

Результаты освоения дисциплины определяются преподавателем в процессе проведения экспертного наблюдения и оценки на лабораторных и практических занятиях, различных видов опроса, выполнения индивидуальных домашних заданий, расчетов, решения задач по индивидуальным заданиям, контрольной работы. Итоговая аттестация в форме экзамена. Студент допускается к сдаче экзамена, если зачтены все лабораторные работы и контрольные работы, а также тематические внеаудиторные самостоятельные работы выполнены на положительные оценки.

Контроль и оценка освоения учебной дисциплины по темам (разделам)

Таблица 2.2

Элемент учебной			Формы и ме	стоды контроля			
дисциплины	Текущий контроль		кущий контроль Рубежный контроль		Промежуточная аттестация		
	Форма контроля Проверяемые ОК,		Форма контроля	Проверяемые ОК, У,	Форма контроля	Проверяемые ОК, У,	
		У, 3		3		3	
Раздел 1. Элементная			KP №1,	ОК01, ОК02,	Э	ОК01, ОК02,	
база электронных			ЛР№1, ЛР№2,	ПК1.1, ПК1.2,		ПК1.1, ПК1.2,	
устройств			ЛР№3, ЛР№4	ПК1.3, ПК 3.2		ПК1.3, ПК 3.2	
Тема 1.1.	УО	ОК01, ОК02,					
Пассивные электронные		ПК1.1, ПК1.2,					
компоненты		ПК1.3, ПК 3.2					
Тема 1.2.	УО	ОК01, ОК02,					
Физические основы работы		ПК1.1, ПК1.2,					
полупроводниковых		ПК1.3, ПК 3.2					
приборов		,					
Тема 1.3. Полупроводниковые	УО, ЛР№1	ОК01, ОК02,					
диоды		ПК1.1, ПК1.2,					
Тема 1.4.	УО, ЛР№2	ОК01, ОК02,					
Биполярные		ПК1.1, ПК1.2,					
транзисторы		ПК1.3, ПК 3.2					
Тема 1.5.	УО, ЛР№3	ОК01, ОК02,					
Полевые		ПК1.1, ПК1.2,					
транзисторы	VO TIDAS	ПК1 3 ПК 3 2					
Тема 1.6.	УО, ЛР№4	OK01, OK02,					
Тиристоры		ПК1.1, ПК1.2,					
	***	ПК1.3, ПК 3.2					
Тема 1.7.	VO	ОК01, ОК02,					
Нелинейные		ПК1.1, ПК1.2,					
полупроводниковые приборы		ПК1.3, ПК 3.2					

Тема 1.8. Оптоэлектронные приборы	VO,T	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Раздел 2. Основы схемотехники электронных схем			Т, ЛР№5, ЛР№6, ЛР№7, ЛР№8, ЛР№9, ЛР№10	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	Э	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2
Тема 2.1. Источники питания электронных устройств	УО, ЛР№5, ЛР№6, ЛР№7	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Тема 2.2. Усилители	УО, СР, ЛР№8, ЛР№9	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Тема 2.3. Генераторы	УО	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Тема 2.4. Электрические фильтры	УО, ЛР№10	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Тема 2.5. Электронные ключи	<i>yo</i>	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Тема 2.6. Логические элементы	УО	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Тема 2.7. Тригтеры	УО	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2				
Раздел 3. Основы микроэлектроники			<i>KP№2, T</i>	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2	Э	ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Тема 3.1.	УО	ОК-1, ОК-2,		
Принципы и технологии		$\Pi K1.1, \Pi K2.7,$		
построения ИМС		ПКЗ.2		
Тема 3.2.	УО	OK-1, OK-2,		
Аналоговые интегральные		$\Pi K1.1, \Pi K2.7,$		
микросхемы		ПКЗ.2		
Тема 3.3.	УО,Т	OK-1, OK-2,		
Цифровые интегральные		$\Pi K1.1, \Pi K2.7,$		
микросхемы		ПКЗ.2		
(ЦИМС)				

3.2 Кодификатор оценочных средств

Функциональный признак	Код оценочного средства
оценочного средства (тип	
контрольного задания)	
Устный опрос	УО
Практическая работа № п	ПР № п
Лабораторная работа	ЛР №
Тестирование	T
Контрольная работа № п	KP № n
Задания для самостоятельной работы	CP
- реферат;	
- доклад;	
- сообщение;	
- ЭCCE.	
Разноуровневые задачи и задания	P33
(расчётные, графические)	
Рабочая тетрадь	PT
Проект	П
Деловая игра	ДИ
Кейс-задача	К3
Зачёт	3
Дифференцированный зачёт	ДЗ
Экзамен	Э

4.Задания для оценки освоения дисциплины

Устный опрос.

- 1. Как устроены и маркируются резисторы?
- 2. Какие виды конденсаторов выпускает промышленность?
- 3. Как маркируются конденсаторы?
- 4. Чем отличаются проводники, полупроводники и изоляторы с точки зрения энергетической модели атома?
 - 5. Что такое потенциальный барьер в *p-n*-переходе?
- 6. Как работает p-n-переход при подключении к нему напряжения в прямом направлении?
- 7. Как работает p-n-переход при подключении к нему напряжения в обратном направлении?
 - 8. Перечислите параметры, которыми характеризуется диод?
 - 9. Какие виды пробоя не приводят к выходу из строя п/п элемента?.
 - 10. Какое отличие между стабилитроном и стабистором?
 - 11. Какими параметрами характеризуется биполярный транзистор?
 - 12. Какова разница между параметрами малого и большого сигнала?
- 13. Какими особенностями обладают полевые транзисторы по сравнению с биполярными?
 - 14. Особенности применения полевых транзисторов?
 - 15. Какие схемы включения транзисторов известны?
 - 16. Как можно включить и выключить тиристор (динистор, тринистор)?
- 17. Какой вид тиристров предназначен для коммутации переменного напряжения?
 - 18. Назовите области применения терморезисторов.
 - 19. Какой принцип положен в основу работы светодиодов?
 - 20. Как устроен и работает ЖКИ?
 - 21. Какие существуют классы микросхем?
 - 22. Технология изготовления гибридных микросхем?
 - 23. Технологии изготовления полупроводниковых микросхем?
 - 24. Какие современные классы цифровых микросхем?
 - 25. Достоинства и недостатки ТТЛ логики?
 - 26. Достоинства и недостатки КМОП логики?
 - 27. В чём отличие аналоговых микросхем от цифровых?
- 28 Как изолируются отдельные участки в кристалле МС в полупроводниковой технологии?
 - 29. Какие основные схемные решения используются в аналоговых МС?
 - 30. Как маркируются аналоговые и цифровые микросхемы?
- 31. Какие из однофазных выпрямителей обеспечивают меньший уровень пульсаций?
- 32. Достоинства и недостатки различных схем однофазных выпрямителей?
 - 33. Как работает мостовой выпрямитель (схема Греца)?

- 34. Какие фильтры применяются для сглаживания пульсаций выпрямителей?
 - 35. Как работает стабилизатор напряжения на стабилитроне (стабисторе)?
 - 36. Как работает стабилизатор собранный по компенсационной схеме?
 - 37. Достоинства и недостатки ключевого стабилизатора напряжения?
 - 38. Виды обратной связи применяются в усилителях?
 - 39. Нарисуйте схему отнотактного резистивного каскада?
 - 40. Перечислите классы усиления.
- 41. Какие используются основные схемы термостабилизации усилительного элемента.
- 42. Раскажите токопроходение в схеме двухтактного трансформаторного усилителя?
 - 43. Нарисуйте схему двухтактного бестрансформаторного каскада?
- 44. Как изменяются параметры усилителя при увеличении усилительных каскалов?
 - 45. Что такое местная и общая обратная связь?
 - 46. Условия возникновения генерации.
 - 47. Способы увеличения стабильности частоты в генераторах?
- 48. Сравните параметры идеального и реального операционного усиителя.
 - 49. Какие схемы включения ОУ вы знаете?
 - 50. Чем определяется коэффициент усиления каскада на ОУ?
 - 51. Поясните режим работы электронного ключа?
 - 52. Какие схемные решения логических элементов известны?
 - 53. Принцип работы симметричного триггера?
 - 54. Области использования триггера Шмитта?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2 Критерии оценивания:

- 1.Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей;

Общее число баллов 20. (зачёт) Каждый верный ответ-1 балл

Из количества набранных баллов:

90-100% (18 - 20 б) - оценка 5 «зачтено», 80-80-89% (16 -17 б) - оценка 4 «зачтено»,

70-79% (10 -15 б) - оценка 3 «зачтено», 69% менее (10 б) - оценка 2 «не зачтено».

Лабораторные работы

Лабораторная работа №1

Тема: «Исследование свойств полупроводниковых диодов».

Цель: экспериментальным путем проверить справедливость теоретического обоснования зависимостей I=f(U) для диодов в прямом и обратном направлениях.

Содержание отчета

- 1. Схема электрической цепи.
- 2. Расчет цены деления приборов.
- 3. Таблицы с результатами измерений и расчетов.
- 4. Графики зависимостей I = f(U) в прямом и обратном направлениях.
- 5. Расчёт статического и динамического сопротивления в прямом и обратном направлениях.
 - 6. Вывод.

Контрольные вопросы

- 1. Что такое собственная и примесная проводимости?
- 2. За счет, каких носителей зарядов образуется ток при включении диода в прямом направлении?
 - 3. Чем определяется ток в обратном направлении?
 - 4. Перечислите и охарактеризуйте параметры диода?
 - 5. Расшифруйте маркировку применённых в лабораторной работе диодов?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электрическую схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения(5 б).

Задание №3 Снять зависимость силы тока от напряжения, при прямом включении диода. (5 б).

Задание №4 Снять зависимость силы тока от напряжения, при прямом включении диода (5 б).

Задание №5 Рассчитать величины статического и динамического сопротивлений диода в прямом и обратном направлениях.(10 б).

Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №2

Тема: «Исследование свойств биполярных транзисторов».

Цель: экспериментальным путем проверить справедливость теоретического обоснования входной и выходной зависимостей I=f(U) для биполярных транзисторов.

Содержание отчета

- 1. Схема электрической цепи.
- 2. Расчет цены деления приборов.
- 3. Таблицы с результатами измерений и расчетов.
- 4. Графики входной и выходной зависимостей I = f(U).
- 5. Расчёт коэффициента передачи тока и статического и динамического входного и выходного сопротивлений.
 - 6. Вывод.

Контрольные вопросы

- 1. Определение биполярного транзистора?
- 2. Какими ВАХ вольт-амперными характеристиками характеризуется транзистор?
 - 3. Какими параметрами характеризуется биполярный транзистор?
 - 4. Какова разница между параметрами малого и большого сигнала?
- 5. Расшифруйте маркировку применённых в лабораторной работе транзисторов?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1.Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей графиков; работа c измерительными приборами, И аппаратурой; работа оборудованием, c нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электрическую схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения(5

б).

Задание №3 Установить зависимость силы тока от напряжения входной характеристики биполярного транзистора (5 б).

Задание №4 Установить зависимость силы тока от напряжения выходной характеристики биполярного транзистора (5 б).

Задание №5 Рассчитать величины коэффициента передачи тока и статического и динамического входного и выходного сопротивлений. (10 б).

Задание №6 – Ответить на контрольные вопросы (5 б). Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №3

Тема: «Исследование свойств полевых транзисторов».

Цель: экспериментальным путем проверить справедливость теоретического обоснования проходной и выходной зависимостей I=f(U) для полевых транзисторов.

Содержание отчета

- 1. Схема электрической цепи.
- 2. Расчет цены деления приборов.
- 3. Таблицы с результатами измерений и расчетов.
- 4. Графики проходной и выходной зависимостей I = f(U).
- 5. Расчёт крутизны характеристики и статического и динамического выходного сопротивлений, определение начального тока стока и напряжения отсечки.
 - 6. Вывод.

Контрольные вопросы

- 1. Какие виды полевых транзисторов Вы знаете?
- 2. Какими BAX вольт-амперными характеристиками характеризуется полевой транзистор?
 - 3. Какими параметрами характеризуется полевой транзистор?
- 4. Какими особенностями обладают полевые транзисторы по сравнению с биполярными?
- 5. Как отражается на параметрах применение в полевом транзисторе изолированного затвора?
- 6. Расшифруйте маркировку применённых в лабораторной работе транзисторов?
 - 7. Назовите основные правила работы с полевыми транзисторами.

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2 , ПК1.3, ПК 3.2

Критерии оценивания:

1.Сформированность практических умений, необходимых в последующем в профессиональной деятельности;

- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электрическую схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения(5 б).

Задание №3 Установить зависимость силы тока от напряжения проходной характеристики полевого транзистора (5 б).

Задание №4 Установить зависимость силы тока от напряжения выходной характеристики полевого транзистора (5 б).

Задание №5 Расчитать величины крутизну характеристики и статического и динамического выходного сопротивлений. (10 б).

Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №4

Тема: «Исследование свойств тиристоров».

Цель: экспериментальным путем проверить справедливость теоретического обоснования зависимости I=f(U) для тиристоров.

Содержание отчета

- 1. Схема электрической цепи.
- 2. Расчет цены деления приборов.
- 3. Таблицы с результатами измерений и расчетов.
- 4. Графики зависимостей I = f(U) для выходной и управляющей характеристик тиристора.
- 5. Расчёт крутизны характеристики и статического и динамического выходного сопротивлений, определение начального тока стока и напряжения отсечки.
 - 6. Вывод.

Контрольные вопросы

- 1. Определение тиристора?
- 2. Какие виды тиристоров Вы знаете?
- 3. Какими ВАХ вольт-амперными характеристиками характеризуется тиристор?

- 4. Какими параметрами характеризуется тиристор?
- 5. Какими особенностями обладают симисторы по сравнению с тринисторами и динисторами?
- 6. Расшифруйте маркировки применённых в лабораторной работе тиристоров?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения(5 б).

Задание №3 Установить зависимость силы тока от напряжения характеристики управления тиристора (5 б).

Задание №4 Установить зависимость силы тока от напряжения выходной характеристики тиристора (5 б).

Задание №5 Определить величины $U_{om\kappa p}$, $I_{y\partial}$, $U_{y\ om\kappa p}$, $I_{y\ om\kappa}$ тиристора. (10 б).

Задание №6 – Ответить на контрольные вопросы (5 б). Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №5

Тема: «Исследование работы однофазных выпрямителей».

Цель: изучить работу однополупериодной, двухполупериодной и мостовой схем выпрямителей. Измерить параметры выпрямителей под нагрузкой и на холостом ходу.

Содержание отчета

- 1. Электронная схема.
- 2. Расчет цены деления приборов. Работа с осциллографом.
- 3. Замеры режима работы выпрямителей.
- 4. Снять осциллограммы пульсаций выпрямителей.
- 5. Таблицы с результатами измерений, осциллограммы.
- 6. Вывод.

Контрольные вопросы

- 1. Как работает однополупериодная схема выпрямителя?
- 2. Как работает двухполупериодная схема выпрямителя?
- 3. Как работает мостовая схема выпрямителя?
- 4. Почему частота пульсаций в мостовой и двухполупериодной схемах в 2 раза больше частоты сети?
 - 5. Почему при ёмкостной нагрузке величина пульсаций уменьшается?
 - 6. Достоинства и недостатки каждой схемы выпрямления?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения, настроить осциллограф (5 б).

Задание №3 Измерить режимы работы транзисторов (5 б).

Задание №4 Снять осциллограммы входного и выходного сигналов. (5 б).

Задание №5 Определить коэффициент усиления каскадов.(10 б).

Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №6

Тема: «Исследование сглаживающих фильтров».

Цель: изучить работу LC и RC фильтров, измерить параметры LC Γ - и Π - образного фильтра.

Содержание отчета

- 1. Электронная схема.
- 2. Расчет цены деления приборов. Работа с осциллографом.
- 3. Замеры режима работы фильтров.
- 4. Снять осциллограммы пульсаций фиильтров.
- 5. Таблицы с результатами измерений, осциллограммы.
- 6. Вывод.

Контрольные вопросы

- 1. Как работает LC фильтр?
- 2. Как работает *RC* фильтр?
- 3. Достоинства и недостатки LC и RC фильтров?
- 4. Области применения LC и RC фильтров?
- 5. Достоинства и недостатки Г- и П- образных фильтров?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и c построения чертежей И графиков; работа измерительными приборами, оборудованием, аппаратурой; работа нормативными документами, cинструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения, настроить осциллограф (5 б).

Задание №3 Измерить режимы работы транзисторов (5 б).

Задание №4 Снять осциллограммы входного и выходного сигналов. (5 б).

Задание №5 Определить коэффициент усиления каскадов и усилителя в целом.(10 б).

Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено», 69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №7 Исследование стабилизатора напряжения.

Цель: изучить работу стабилизаторов напряжения, практически снять и проанализировать параметры стабилизатора напряжения на стабилитроне.

Содержание отчета

- 1. Электронная схема.
- 2. Расчет цены деления приборов. Работа с осциллографом.
- 3. Замерить режимы работы стабилитрона.
- 4. Снять осциллограммы пульсаций после стабилизатора.
- 5. Таблицы с результатами измерений, осциллограммы.
- 6. Вывод.

Контрольные вопросы

- 1. Как устроен стабилитрон, ВАХ стабилитрона?
- 2. Принцип работы схемы стабилизатора на стабилитроне?
- 3. Почему схема стабилизатора уменьшает величину пульсаций напряжения на нагрузке?
 - 4. Какие виды стабилизаторов известны?
 - 5. Принцип работы стабилизатора по обобщённой блок-схеме?
- 6. Как выбирается стабилитрон для параметрической схемы стабилизатора напряжения?
 - 7. Чем отличается стабилизатор напряжения от стабилизатора тока?
 - 8. Чем отличается включении в схему стабилитрона и стабистора?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1.Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и с измерительными приборами, построения чертежей И графиков; работа оборудованием, работа аппаратурой; нормативными документами, cинструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения, настроить осциллограф (5 б).

Задание №3 Измерить режимы работы транзисторов (5 б).

Задание №4 Снять осциллограммы сигналов выходного и в цепи обратной связи. (5 б).

Задание №5 Сравнить измеренную и расчитанную частоту генератора.(10 б).

Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №8 Исследование однотактного усилителя.

Цель: изучить работу однотактного усилительного каскада, практически снять и проанализировать характеристики однотактного каскада на биполярном транзисторе. Определить основные параметры каскада.

Содержание отчета

- 1. Электронная схема.
- 2. Расчет цены деления приборов. Работа с осциллографом.
- 3. Замерить режимы работы транзистора и сигнала на входе и выходе каскада.
- 4. Снять осциллограммы сигнала на входе и выходе каскада.
- 5. Таблицы с результатами измерений, осциллограммы.
- 6. Вывод.

Контрольные вопросы

- 1. Как определяются виды каскадов?
- 2. По какой схеме включён транзистор в данной работе?
- 3. Какими параметрами характеризуется усилитель?
- 4. Что влияет на коэффициент усиления каскада?
- 5. Каково назначение конденсаторов в схеме?
- 6. Каково назначение конденсаторов C_2 и C_3 в схеме?
- 7. Каково назначение конденсатора C_4 в схеме?
- 8. Каково назначение конденсатора C_{I} в схеме?
- 9. Каково назначение резисторов R_1 и R_2 в схеме?
- 10. Каково назначение резистора R_3 в схеме?
- 11. Каково назначение резисторов R_4 и R_5 в схеме?
- 12. Есть ли в этом каскаде ОС, её вид, и как она включена?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);

3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения, настроить осциллограф (5 б).

Задание №3 Измерить режимы работы транзисторов (5 б).

Задание №4 Снять осциллограммы сигналов выходного и в цепи обратной связи. (5 б).

Задание №5 Сравнить измеренную и расчитанную частоту генератора.(10 б). Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №9

Исследование схем включения операционных усилителей.

Цель: изучить работу операционных усилителей, практически снять и проанализировать частотную характеристику каскада построенного на ОУ. Определить основные параметры каскада.

Содержание отчета

- 1. Электронная схема.
- 2. Расчет цены деления приборов. Работа с осциллографом.
- 3. Замерить режимы работы транзистора и сигнала на входе и выходе каскада.
- 4. Снять осциллограммы сигнала на входе и выходе каскада.
- 5. Таблицы с результатами измерений, осциллограммы.
- 6. Вывод.

Контрольные вопросы

- 1. Какими параметрами обладает идеальный ОУ?
- 2. Какими параметрами обладает реальный ОУ?
- 3. Какой вид ОС применяется для построения усилителя на ОУ?
- 4. Какие устройства можно собрать на ОУ?
- 5. Какие каскады имеются в составе каждого ОУ?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

1.Сформированность практических умений, необходимых в последующем в профессиональной деятельности;

- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения, настроить осциллограф (5 б).

Задание №3 Измерить режимы работы транзисторов (5 б).

Задание №4 Снять осциллограммы сигналов выходного и в цепи обратной связи. (5 б).

Задание №5 Сравнить измеренную и рассчитанную частоту генератора.(10 б).

Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Лабораторная работа №10

Исследование устройства и работы электрических фильтров типа ЗБФ и ЗБ-ДСШ.

Цель: изучить работу фильтра, практически снять и проанализировать частотные характеристики фильтра. Определить основные параметры фильтра.

Содержание отчета

- 1. Электронная схема.
- 2. Расчет цены деления приборов. Работа с осциллографом.
- 3. Замерить напряжения сигнала на входе и выходе каскада.
- 4. Снять частотную характеристику фильтра.
- 4. Снять осциллограммы сигнала на входе и выходе каскада.
- 5. Таблицы с результатами измерений, осциллограммы.
- 6. Вывод.

Контрольные вопросы

- 1. Какие фильтры, применяемые в СЦБ, Вы знаете?
- 2. Какова область применения фильтров ЗБФ и ЗБ-ДСШ?
- 3. Опишите принцип работы фильтров?
- 4. Какими параметрами характеризуются фильтры?

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей и графиков; работа с измерительными приборами, оборудованием, аппаратурой; работа с нормативными документами, инструктивными материалами, справочниками; составление проектной, плановой, отчетной, другой специальной документации.

Общее число баллов 35.

Задание №1 Собрать электронную схему (5 б)

Задание №2 Настроить приборы макета для измерения тока и напряжения, настроить осциллограф (5 б).

Задание №3 Измерить режимы работы транзисторов (5 б).

Задание №4 Снять осциллограммы сигналов выходного и в цепи обратной связи. (5 б).

Задание №5 Сравнить измеренную и расчитанную частоту генератора.(10 б). Задание №6 – Ответить на контрольные вопросы (5 б).

Из количества набранных баллов:

90-100% (31 - 35 б) - оценка 5 «зачтено»,

80-89% (28 -30 б) - оценка 4 «зачтено»,

70-79% (24 -27 б) - оценка 3 «зачтено»,

69% менее (24 б) - оценка 2 «не зачтено».

Тестовые задания

Раздел 1. Элементная база электронных устройств

- 1. Прямое включение p-n перехода это подключение при котором:
 - А) "-" источника подключается к р(дырочной) области и к побласти (электронной)
 - В) "+" источника подключается к р(дырочной) области, а "-" к побласти (электронной)
 - С) "+" источника подключается к р(дырочной) области и к n-области(электронной)
- 2. Обратное включение p-n перехода это подключение
 - А) обратное прямому("+" источника к n-области, а "-" к p-области)
 - В) При котором электропроводность будет обратна сопротивлению
 - С) При которой "+" источника подключён к обоим областям полупроводника
- 3. Генерация носителей заряда это физическое явление при котором происходит...
- А) исчезновение электронно-дырочная пары
- В) возникает электронно-дырочная пара, при поглощении атомом энергии
- С) возникает электрон, при выделении энергии
- 4. Рекомбинация это физическое явление, при котором происходит...
- А) взаимное исчезновение электронно-дырочной пары, при выделении энергии
- В) исчезновение дырки, при поглощении энергии
- С) генерация четырёх электрон, на внешней атомной орбитали.
- 5. Выберите два типа электропроводности, которые вы знаете:
 - А) Электронная, дырочная
 - В) Электронная, нейтронная
 - С) Позитронная, дырочная
- 6. Выберите правильное определение: p-n переход это ...
 - А) Область контакта проводник-полупроводник
- В) область соприкосновения двух полупроводников с разными типами проводимости.
 - С) Это область контакта диэлектрик с разной величиной запрещённой зоны.
 - 7. Выберите правильное определение: Собственный полупроводник это
- А) полупроводник, в котором отсутствуют примесные атомы, влияющие на его коэффициент отражения
- В) полупроводник, в котором присутствуют примесные атомы другой валентности, влияющие на его электропроводность.
- С) полупроводник, в котором отсутствуют примесные атомы другой валентности, влияющие на его электропроводность.
 - 8. Сколько диод имеет p-n переходов?
 - А) 2 и более
 - В) 4 и более
 - С) только один
 - 9. Какое основное свойство диодов?
 - А) Большое поглощение электроэнергии

- В) Односторонняя проводимость
- С) Увеличение накопленного заряда
- 10. Примесный полупроводник это ...
- А) полупроводник, электрические свойства которого определяются, в основном, примесями других химических элементов.
 - В) полупроводник, электрические свойства которого не меняются во времени.
- С) полупроводник, электрические свойства которого не определяются примесями других химических элементов, находящихся в его составе
 - 11. Каких типов диодов не существует в электронике?
 - А) СВЧ-диод, выпрямительный диод
 - В) Туннельный диод, стабилизирующий диод(стабилитрон)
 - С) Вычислительный диод, двоичный диод
 - 12. Выпрямительный диод используется в электронной технике для ...
 - А) выпрямления переменного тока(преобразования в постоянный)
 - В) стабилизации напряжения
 - С) излучения света
 - 13. Стабилизирующий диод(стабилитрон) используется в электронике для ...
 - А) изменения электроэнергии в цепи
 - В) стабилизации напряжения на отдельных участках электрической цепи
 - С) поглощения радиоэлектронных излучений
 - 14. Сколько выводов имеет диод?
 - A) 4
 - B) 2
 - С) 5 и более
 - 15. Выводы биполярного транзистора называются:
 - А) Отрицательный и положительный, нейтральный
 - В) Эмиттер, коллектор и база
 - С) Эмиттер, исток и анод
 - 16. Сколько выводов имеет Биполярный транзистор?
 - A) 3
 - В) 4 и более
 - C) 5
 - 17. Выводы Диода называются
 - А) Отрицательный и положительный
 - В) Анод и катод
 - С) Эмиттер и Исток
- 18.Основными физическими явлениями, участвующими в работе биполярного транзистора являются:
 - А) Генерирование и Экстракция
 - В) рекомбинация и Инжекция
 - С) Инжекция и Экстракция
 - 19. сколько биполярный транзистор имеет основных режимов работы?
 - A) 1
 - B) 3
 - C) 2

- 20. Основные режимы работы биполярного транзистора называются:
- А) Активный, насыщения, отсечки
- В) генеративный, насыщения, инжективный
- С) рекомбинационный, активный, экстракционный
- 21. Для чего используется биполярный транзистор?
- А) Отражения сигналов
- В) Усиления сигнала
- С) увеличения ёмкости
- 22. Какие есть схемы включения биполярного транзистора в цепь?
- А) с общими базой, эмиттером и коллектором
- В) с общими анодом и катодом
- С) с разветвлёнными электродами питания
- 23. Какая схема включения биполярного транзистора в цепь не обеспечивает усиления по току?
 - А) с общей базой
 - В) с общим коллектором
 - С) с общим эмиттером
- 24. Какая схема включения биполярного транзистора в цепь обеспечивает максимальное усиление по мощности?
 - А) с общим коллектором
 - В) с общей базой
 - С) с общим эмиттером
- 25. Какая схема включения биполярного транзистора в цепь имеет высокое входное сопротивление?
 - А) с общей базой
 - В) с общим коллектором
 - С) с общим эмиттером
 - 26. сколько выводов имеет полевой транзистор?
 - А) столько же, сколько и биполярный (три)
 - В) два
 - С) пять и более
 - 27. Выводы полевого транзистора называются:
 - А) Эмиттер, анод и база
 - В) Сток, исток, затвор
 - С) коллектор, катод и отвод
 - 28.Сколько р-п переходов имеют тиристоры?
 - А) три и более
 - В) пять
 - С) два
 - 29. Фотоизлучателем называется:
 - А) преобразователь электрического поля в магнитное
 - В) преобразователь электрического тока в фотоизлучение
 - С)преобразователь магнитного поля в фотоизлучения
 - 30. Фотоприёмником называется:
 - А) преобразователь фотоизлучения в электрический ток

- В) преобразователь электромагнитного поля
- С) Излучатель СВЧ волны
- 31. На каких физических явлениях основана работа оптоэлектроники?
- А) Инжекция и рекомбинация
- В) Экстракция и генерация
- С) Фотоэффекты(внутренний, внешний и т.д.)

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, иих применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей;

Общее число баллов 14. (зачёт)

4. Каждый верный ответ -2 б

Из количества набранных баллов:

90-100% (12 - 14 б) - оценка 5 «зачтено»,

80-89% (10 -12 б) - оценка 4 «зачтено»,

70-79% (8-10 б) - оценка 3 «зачтено»,

69% менее (8 б) - оценка 2 «не зачтено».

Тест

«Раздел 2.Основы схемотехники электронных схем»

Фотодиоды являются

- А) фотоизлучателями
- В) радиоприёмниками
- С) фотоприборами

Сопротивление в фоторезисторах зависит от:

- А) частоты тока
- В) освещённости
- С) мощности

При увеличении освещённости фоторезистора, уменьшается

- А) сопротивление
- В) электропроводность
- С) генерация носителей зарядов

Оптопарой называется оптоэлектронный полупроводниковый прибор, содержащий:

- А) фотоприёмник
- В) фотоизлучатель
- С) фотоизлучатель и фотоприемник оптического излучения

Что называется микросхемой?

- А) называют функционально законченный электронный узел (модуль), элементы и соединения в котором конструктивно неразделимы и изготовлены одновременно
- В) универсальная, управляемая часами, основанная на Регистре цифровая интегральная схема, которая принимает двоичные данные в качестве входных данных
 - С) Слой проводника на диэлектрике

Микросхемы различают двух видов:

- А) полупроводниковые и гибридные
- В) полупроводниковые и гибридно-плёночные
- С) полупроводниковые и плёночные

Трёхфазные мощные выпрямители используются:

- А) в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза.
 - В) в простейших электронных приборах массового использования
 - С) в малогабаритных радиоприёмниках

Что конструктивно включает в себя микропроцессор?

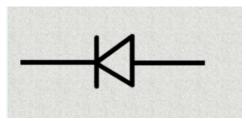
- А) ОЗУ, СОЗУ, УУ, АЛУ
- В) ПЗУ, АЛУ,УУ, устройство ввода/вывода
- С) УУ, АЛУ, СОЗУ

Из скольки этапов состоит современное изготовление транзисторов?

- A) 8
- B) 3
- C) 16

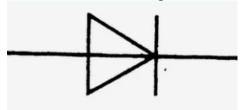
Какими методами получают р-п переходы транзисторов?

- А) методами основания, выращивания, эпитаксии
- В) методами сплавления, диффузии, эпитаксии, выращивания.
- С) методами зондирования, ионизации, сплавления, диффузии.

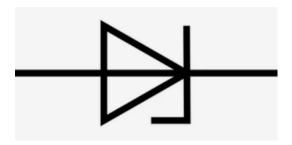

Интегральные схемы по функциональному назначению делятся на два основных класса:

- А) простые, сложные
- В) дифференциальные, непрерывные
- С) аналоговые и цифровые

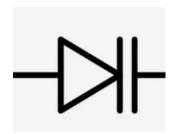
Генератор электрического тока - это


- А) преобразователь магнитной энергии в электрическую
- В) Преобразователь механической энергии в электрическую
- С) преобразователь СВЧ волн электромагнитного поля Двигатель это
- А) преобразователь какого-либо вида энергии в механическую
- В) преобразователь химической энергии в механическую
- С) преобразователь электрической энергии в механическую

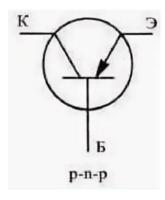
На этой схеме изображён:


- А) Диод
- В) Транзистор
- С) Конденсатор

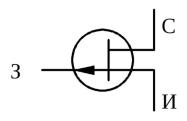
На этой схеме изображён:


- А) стабилитрон
- В) выпрямительный Диод
- С) Туннельный диод

На этой схеме изображён:


- А) Стабилизирующий диод(стабилитрон)
- В) Выпрямительный диод
- С) транзистор

Как называется диод меняющий собственную ёмкость, в зависимости от приложенного к нему напряжения?


- А) Варикап
- В) Выпрямительный
- С) Стабилитрон

НА этой схеме изображён:

- А) резистор
- В) биполярный транзистор
- С) тиристор

На этой схеме изображён:

- А) конденсатор
- В) полевой транзистор
- С) резистор
- 1. Какой выпрямитель удобно использовать в низковольтных устройствах с током $2 \div 10 A$?
 - А) однополупериодный; Б) двухполупериодный; В) мостовой.
- 2. Какова частота пульсаций выпрямленного напряжения в мостовом выпрямителе?
 - A) $f_n = f_c$; B) $f_n = 2f_c$; B) $f_n = 3f_c$.
 - 3. В каких случаях удобно применять RC-фильтр?
 - А) при большом напряжении; Б) при малом напряжении; В) при малом токе.
 - 4. Когда следует применять схему импульсного стабилизатора напряжения?
- А) при стеснённых габаритах устройства и малом теплообмене; Б) при свободных габаритах устройства и малом теплообмене; В) при жёстких условиях по высокочастотным помехам.
- 5. Как называется каскад усиливающий синусоидальный сигнал полностью и имеющий в цепи коллектора транзистора резистор?
- А) резистивный однотактный; Б) резистивный двухтактный; В) однотактный трансформаторный.

- 6. В каком классе происходит усиление если транзистор усиливает одну полуволну?
 - А) класс A; Б) класс B; В) класс C; Г) класс D.
 - 7. Что такое обратная связь?
- А) подача сигнала со входа усилителя на его выход; Б) подача сигнала с выхода усилителя на его вход на нее действует электрическое поле; В) подача сигнала со входа усилителя на его выход в противофазе; Γ) подача сигнала с выхода усилителя на его вход в противофазе.
- 8. Какой вид обратной связи уменьшает выходное сопротивление усилителя? А) ОС по напряжению; Б) ОС по току; В) последовательная ОС; Г) Параллельная ОС.
- 9. Какая схема термостабилизации наиболее эффективная? А) С гасящим резистором в цепи базы транзистора; Б) коллекторная; В) эммитерная.
- 10. Где должна находится рабочая точка покоя при работе транзистора в классе А?
- А) в области насыщения; Б) в области отсечки; В) в середине линейного режима.
- 11 Как изменяются параметры многокаскадного усилителя по сравнению с однокаскадным?
- A) Kyc \uparrow ,Mн и Mв \uparrow , Kr \uparrow , помехи \uparrow ; Б) Kyc \uparrow ,Mн и Мв \downarrow , Kr \uparrow , помехи \downarrow ; В) Kyc $\uparrow \downarrow$,Мн и Мв \uparrow , Kr \downarrow , помехи \uparrow .
 - 12. Какие транзисторы являются комплиментарными?
- А) с разными структурами, но одинаковыми параметрами; Б) с разными одинаковыми структурами, но разными параметрами; В) с разными структурами и разными параметрами.
 - 13. Условия возникновения генерации?
 - A) $U_c = U_{oc}$ и $\phi_c = \phi_{oc} \pm n \cdot 2 \cdot \pi$; Б) $U_c < U_{oc}$ и $\phi_c = \phi_{oc} \pm n \cdot 2 \cdot \pi$; В) $U_c \ge U_{oc}$ и $\phi_c = \phi_{oc} \pm n \cdot \pi$.
 - 14. Какия есть способы стабилизации частоты генератора?
- параметрический, A) использование кварца, термостатирование, напряжения стабилизация параметрический, амортизация, питания; Б) использование варикапа, термостатирование, амортизация, стабилизация напряжения питания; В) параметрический, использование кварца, охлаждение, амортизация, стабилизация напряжения питания; Г) параметрический, использование кварца, термостатирование, жёсткое крепление, использование батарей.
 - 15. От чего зависит коэффициент усиления каскада на ОУ?
- А) от соотношения резисторов ООС; Б) от соотношения резисторов ООС и коэффициента усиления самого ОУ; В) от коэффициента усиления самого ОУ.
 - 16. Особенности выбора транзистора для ключа с индуктивной нагрузкой?
 - A) $U_{\kappa_{\mathfrak{I},\mathsf{MAKC}}} \geq 2 \cdot U_{\mathsf{num}}$; B) $2 \cdot U_{\mathsf{num}} \geq U_{\kappa_{\mathfrak{I},\mathsf{MAKC}}} > U_{\mathsf{num}}$; B) $U_{\kappa_{\mathfrak{I},\mathsf{MAKC}}} \approx U_{\mathsf{num}}$.
 - 17. Назовите области применения триггеров Шмитта?
 - А) в счётных схемах; Б) в схемах сравнения; В) в преобразовательных схемах.
 - 18. Какой коэффициент деления обеспечивает симметричный триггер?
 - А) на 4; Б) на 3; В) на 2.

Контролируемые компетенции ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, иих применение к практическому решению задач (в том числе, профессиональных : анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей;

Общее число баллов 18. (зачёт)

Каждый верный ответ-2 б

Из количества набранных баллов:

90-100% (32 – 36 б) - оценка 5 «зачтено»,

80-89% (28 -31 б) - оценка 4 «зачтено»,

70-79% (25 -27 б) - оценка 3 «зачтено»,

69% менее (25 б) - оценка 2 «не зачтено».

Ключи к тестам:

Тест 1:

№	Правиль	№	Правил	No	Правильн	No	Правильн
вопро	ный	вопроса	ьный	вопроса	ый ответ	вопроса	ый ответ
ca	ответ		ответ				
1	В	9	В	17	В	25	В
2	A	10	A	18	C	26	A
3	В	11	C	19	В	27	В
4	A	12	A	20	A	28	A
5	A	13	В	21	В	29	В
6	В	14	В	22	A	30	A
7	С	15	В	23	A	31	С
8	С	16	A	24	С		

Тест 2

No	Правиль	№	Правильн	№	Правильн	№	Правиль
вопроса	ный	вопрос	ый ответ	вопрос	ый ответ	вопрос	ный
	ответ	a		a		a	ответ
1	A	6	В	11	C	16	A
2	В	7	A	12	В	17	A
3	A	8	A	13	A	18	В
4	С	9	A	14	A	19	В
5	Α	10	В	15	В		

Тест «Основы функциональной микроэлектроники»

- 1. Какие существуют классы микросхем?
- А) полупроводниковые, плёночные, гибридные; Б) гибридные комбинированные полупроводниковые; В) сборочные, плёночные, гибридные.
 - 2. Что такое операционный усилитель?
- А) усилитель собранный в виде интегральной микросхемы; Б) усилитель, имеющий в своём составе входной дифференциальный усилитель; В) микросхемный усилитель, на входе которого дифференциальный каскад, а на выходе бестрансформаторный двухтактный каскад.
 - 3. Основные параметры идеального операционного усилителя?
- A) $R_{ex}=1MO$ м, $R_{eblx}=2\kappa O$ м, $K_u=1000$; Б) $R_{ex}=10\Gamma O$ м, $R_{eblx}=0,5O$ м, $K_u=100000$; В) $R_{ex}=\infty$, $R_{eblx}=0$, $K_u=\infty$; Г) $R_{ex}=100MO$ м, $R_{eblx}=200$ Ом, $K_u=50000$.
 - 4. Какие современные классы цифровых микросхем?
- А) ЭСЛ, ТТЛ, ТТЛШ, КМОП; Б) ЭСЛ, ТТЛ ДТЛ, МОП, КМОП; В) РТЛ, ТТЛ, ТТЛШ, КМОП.
- 5. К какому классу микросхем относится напряжение логических уровней $U^{(l)}$ = 3,5B, $U^{(0)}$ =0,35B?
 - А) ЭСЛ; Б) ТТЛ; В) ТТЛШ; Г) КМОП.

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1.Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, иих применение к практическому решению задач (в том числе, профессиональных: анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей;

Общее число баллов 10. (зачёт)

Каждый верный ответ-2 б

Из количества набранных баллов:

90-100% (35 – 39 б) - оценка 5 «зачтено»,

80-89% (31 -34 б) - оценка 4 «зачтено»,

70-79% (27 -30 б) - оценка 3 «зачтено»,

69% менее (27 б) - оценка 2 «не зачтено»

Контрольные работы

Контрольная работа №1

1 задание:

Как называется вывод диода, к которому в прямом направлении прикладывается отрицательный потенциал?

- A) анод;
- Б) катод;
- В) база.

2 задание:

- В каком состоянии находятся p-n-переходы в биполярном транзисторе, работающем в линейном режиме?
 - А) базовый переход открыт, коллекторный закрыт;
 - Б) базовый переход закрыт, коллекторный открыт;
 - В) базовый переход открыт, коллекторный открыт;

3 задание:

Рассчитайте h21э, h21э, h21э, h21э, если Δ Uбэ=0,4B, Δ Uкэ=6,4B Δ Iб=0,06мA, Δ Iк=1,5мA?

4 задание:

Расшифруйте маркировку 2Д204Б, КС162А.

5 задание: Какой полупроводниковый прибор характеризуют следующие параметры Uоткр, Іуд:

6 задание:

Расшифруйте маркировку 3П604Б, КТ3102А.

7 задание:

В каких режимах могут работать фотодиоды?

- А) вентильном, фотодиодным;
- Б) вентильном, генераторным;
- В) вентильном, запорным.

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных : анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей.

Общее число баллов 22.

Задание №1 - (1 б)

Задание №2 - (2 б).

Задание №3- (3 б).

Задание №4 - (3 б).

Задание №5 - (3 б).

Задание №6 - (6 б).

Задание №7 - (4 б).

Из количества набранных баллов:

90-100% (20 - 22 б) - оценка 5 «зачтено»,

80-89% (17 -19 б) - оценка 4 «зачтено»,

70-79% (15 -16 б) - оценка 3 «зачтено»,

69% менее (15 б) - оценка 2 «не зачтено».

Контрольная работа №2

1 задание:

Как называется преобразователь электрического тока в оптическое излучение?

- A) световод;
- Б) катод;
- В) Фотоизлучатель.

2 задание:

Как называется преобразователь оптического излучения в электрический ток?

- A) световод;
- Б) катод;
- В) Фотоизлучатель.

3 задание:

Трёхфазные мощные выпрямители используются:

- А) в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза.
 - В) в простейших электронных приборах массового использования
 - С) в малогабаритных радиоприёмниках

4 задание:

Какими методами получают р-п переходы транзисторов?

- А) методами основания, выращивания, эпитаксии
- В) методами сплавления, диффузии, эпитаксии, выращивания.
- С) методами зондирования, ионизации, сплавления, диффузии.

5 задание:

Интегральные схемы по функциональному назначению делятся на два основных класса:

- А) простые, сложные
- В) дифференциальные, непрерывные
- С) аналоговые и цифровые

6 задание:

Генератор электрического тока - это

- А) преобразователь магнитной энергии в электрическую
- В) Преобразователь механической энергии в электрическую
- С) преобразователь СВЧ волн электромагнитного поля

7 задание:

Двигатель - это

- А) преобразователь какого-либо вида энергии в механическую
- В) преобразователь химической энергии в механическую
- С) преобразователь электрической энергии в механическую.

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценивания:

- 1. Сформированность практических умений, необходимых в последующем в профессиональной деятельности;
- 2. Знание основных теорий, закономерностей и понятий, и их применение к практическому решению задач (в том числе, профессиональных : анализ производственных ситуаций, решение ситуационных производственных задач, выполнение профессиональных функций в деловых и ролевых играх и т.п.);
- 3. Закрепление навыков математических вычислений, расчетов, чтения и построения чертежей.

Общее число баллов 22.

Задание №1 - (1 б)

Задание №2 - (2 б).

Задание №3- (3 б).

Задание №4 - (3 б).

Задание №5 - (3 б).

Задание №6 - (6 б).

Задание №7 - (4 б).

Из количества набранных баллов:

90-100% (20 - 22 б) - оценка 5 «зачтено»,

80-89% (17 -19 б) - оценка 4 «зачтено»,

70-79% (15 -16 б) - оценка 3 «зачтено»,

69% менее (15 б) - оценка 2 «не зачтено».

Экзаменационные вопросы:

- 1. Проводимость в проводниках, полупроводниках, изоляторах.
- 2. Полевые транзисторы. Назначение, применение, достоинства, недостатки. Укажите соответствие электродов биполярного транзистора и полевого по функциональному назначению.
- 3. Примесный полупроводник. Основные и неосновные носители зарядов. Проводимость примесных полупроводников.
- 4. Расшифровать и пояснить структуры полевого транзистора МДП и МОП структуры.
 - 5. Собственная проводимость полупроводника.
- 6. Отличие канального транзистора от транзистора с изолированным затвором. Различие в параметрах и вольт-амперных характеристиках.
 - 7. Тиристоры. Вольт-амперная характеристика. Параметры.
- 8. Двухтактный трансформаторный каскад. Параметры, особенности выбора транзисторов, достоинства и недостатки, области применения.
 - 9. Принцип создания *p-n*-перехода.
- 10. Динисторы и тринисторы, поянить их отличие на ВАХ вольт-амперных характеристиках.
 - 11. Проводимость *p-n*-перехода, включённого в прямом направлении.
- 12. Фотоприборы. Принцип работы фотоприборов. Характеристики, вида фотоприборов, маркировка.
 - 13. Проводимость *p-n*-перехода, включённого в обратном направлении.
- 14. Однотактный трансформаторный каскад. Принцип работы, параметры, особенности выбора транзисторов, области применения.
 - 15. Вольт-амперная характеристика *p-n*-перехода: зарисовать. пояснить.
- 16. Однотактный резистивный каскад. Схема, принцип работы, параметры, особенности выбора транзисторов, области применения.
 - 17. Пробой *p-n*-перехода: виды пробоев и их применение.
- 18. Дифференциальный каскад. Схема, принцип работы, параметры, особенности выбора транзисторов, области применения.
 - 19. Разновидности полупроводниковых диодов, и их применение.
 - 20. Составной транзистор. Параметры и область применения.
- 21. Зарисовать и пояснить BAX полупроводникового выпрямительного диода.
- 22. Комплементарные транзисторы. Параметры, примеры и области применения.
 - 23. Зарисовать и пояснить ВАХ стабилитрона.
 - 24. Источники тока. Схема, принцип работы.
- 25. Полевой транзистор с изолированным затвором и индуцированным каналом. Параметры и характеристики

 - 27. Зарисовать и пояснить ВАХ фото и светодиода.
 - 28. Усилитель. Определение, классификация, параметры.

- 29. Объясните вентильные свойства полупроводникового выпрямительного диода.
- 30. Перечислите режимы работы усилительных элементов. Дайте краткую характеристику каждому режиму.
 - 31. Электронные лампы. Принцип работы и область применения.
- 32. Простейший резистивный каскад: Схема, назначение элементов, достоинства и недостатки.
- 33. Биполярные транзисторы. Порядок включения транзисторов. Принцип работы транзисторов в режиме насыщения
 - 34. Что называется ОС обратной связью. Виды ОС, схемы ОС.
 - 35. Полевые транзисторы. Порядок включения транзисторов в схему.
 - 36. Способы введения и снятия ОС в усилителе.
 - 37. Принцип работы транзисторов в режиме отсечки
- 38. Принци построения много каскадных усилителей. Распределение усиления и искажений. Схемы межкаскадной связи.
 - 39. Работа транзистора в режиме ключа.
- 40. ОУ операционные усилители. Требования, предъявляемые к ОУ. Параметры идеального ОУ.
 - 41. Задача №20.
- 42. Схемы включения транзистора по переменного току, достоинства и недостатки.
 - 43. Структурная схема ОУ. Назначение каскадов. Применение ОУ.
 - 44. Порядок включения и принцип работы транзисторов в линейном режиме.
- 45. Генератор электрических колебаний. Необходимые условия самовозбуждения генератора.
- 46. Статические характеристики биполярного транзистора включённого по схеме с ОЭ.
- 47. Причины нестабильности частоты автогенераторов. Способы стабилизации частоты генератора.
- 48. Статические характеристики биполярного транзистора включённого по схеме с ОЭ.
 - 49. Виды импульсных сигналов. Параметры одиночных импульсов.
 - 50. Смешанные параметры транзистора малого сигналы (h- параметры).
- 51. Дифференциальная цепь. Схема, назначение и принцип работы дифференциальной цепи.
 - 52. Температурные и частотные свойства транзистора.
- 53. Что называется интегрирующей цепью. Схема, назначение и принцип работы интегрирующей цепи.
- 54. Мультивибраторы. Схема ждущего мультивибратора. Временные диаграммы, работа.
 - 55. ВЧ и НЧ коррекция. АЧХ импульсных усилителей.
- 56. Триггеры, их назначение и разновидности. Симметричный триггер: схема, принцип работы.
 - 57. Виды помех электронных устройств. Способы защиты.

- 58. Назначение цифровых, логических элементов, их параметры. Перечислите основные логические функции, их элементы и схемы.
- 59. Перечислите типы триггеров выполненных по интегральной технологии, их отличительные особенности.
- 60. Записать таблицу истинности для логической функции И-НЕ, ИЛИ-НЕ. Какие схемы выполняют эту функцию. Счётчики: назначение, выполняемые ими функции, классификация.

Контролируемые компетенции: ОК01, ОК02, ПК1.1, ПК1.2, ПК1.3, ПК 3.2

Критерии оценки при опросе:

«отлично» - ставится при правильном ответе на три вопроса из разных разделов; **«хорошо»** - ставится при правильном ответе на три вопроса, два из которых из одного раздела;

«удовлетворительно» - ставится при правильном ответе на два вопроса; **«неудовлетворительно»-** при отсутствии ответов или неправильные ответы на вопросы